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FM Receiver Input Level
Site #16 Junction 70-27

FM Field Strength FM Field Strength FM Field Strength FM . Field Strength
Band in -dBm . I .Band ; : in -dBm . . Band I in -dBm Band I .in-dBm
87.9 80 . 93.5 80 99.1 • 56 104.7 53
88.1 69 . 93.7 80 99.3 80 .. 104.9 80
88.3 80 93.9 58 99.5 . 62 105.1 59
88.5 60 ·94.1 80 99.7 . 80 105.3 80
88.7 80 .94.3 80 99.9 '. 52 105.5 80
88.9 74 .. 94.5 64 100.1 ! . 80 105.7 59
89.1 80 . 94.7 67 100.3 . 60 105.9 66
89.3 63 . 94.9 80 100.5 80 106.1 80
89.5 69 95.1 56 100.7. 44 106.3 80
89.7 70 .95.3 80 100.9 I 80 106.5 45
89.9 80 95.5 60 101.1 51 106.7 63
90.1 67 95.7 80 101.3 80 106.9 68
90.3 80 95.9 69 101.5 80 107.1 80
90.5 80 96.1 67 101.7 80 107.3 56
90.7 80 96.3 58 101.9 45 107.5 80
90.9 58 96.5 80 102.1 80 107.7 63
91.1 80 96.7 69 102.3 80 107.9 62
91.3 80 96.9 80 102.5 80
91.5 46 97.1 58 102.7 43
91.7 80 97.3 80 102.9 80
91.9 80 97.5 80 103.1 58
92.1 80 97.7 80 103.3 72
92.3 46 97.9 49 103.5 80
92.5 65 98.1 80 103.7 80
92.7 80 98.3 80 103.9 68 .
92.9 80 98.5 55 104.1 80
93.1 60 98.7 64 104.3 57
93.3 80 98.9 80 104.5 80

Table 3 . ,
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FM Receiver Input Level
Site #10 Rest Stop near Exit SA on NJTP

FM Field Strength FM Field Strength FM. Field Strength FM Field Strength
Band in -dBm Band in -dBm Band in -dBm Band in-dBm
87.9 80 93.5 80 99.1 . 52 104.7 80
88.1 80 93.7 80 99.3 80 104.9 80
88.3 80 . 93.9 68 99.5 70 105.1 58
88.5 70 94.1 70 99.7 80 105.3 55
88.7 73 94.3 70 99.9 80 105.5 70
88.9 80 94.5 56 100.1 80 105.7 80
89.1 64 94.7 64 100.3 63 105.9 80
89.3 80 94.9 80 . 100.5 80 106.1 67
89.5 75 95.1 68 100.7 65 106.3 72
89.7 80 95.3 80 100.9 80 106.5 80
89.9 80 95.5 71 101.1 80 106.7 66
90.1 71 95.7 72 101.3 80 106.9 66
90.3 80 95.9 80 101.5 37 107.1 80
90.5 80 96.1 72 101.7 80 . 107.3 80
90.7 80 96.3 62 101.9 63 107.5 67
90.9 65 96.5 64 102.1 75 107.7 80
91.1 80 96.7 80 102.3 80 107.9 80
91.3 80 96.9 80 102.5 80
91.5 80 97.1 56 102.7 70
91.7 80 97.3 80 102.9 63
91.9 80 97.5 55 103.1 80
92.1 80 97.7 80 103.3 40
92.3 63 97.9 63 103.5 80
92.5 80 98.1 64 103.7 80
92.7 80 98.3 56 103.9 80 I

92.9 80 98.5 80 104.1 80
93.1 69 98.7 68 104.3 68
93.3 68 98.9 64 'fOU 65

Table 4 .. ,
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Appendix 6

FM Modulation Increasing Baseband Noise
In The Presence ofAn moe Digital Signal

I. Introduction

Certain types of VHF In-Band/On-Channel (maC) digital audio broadcasting
(DAB)systems transport digital audio information on independent adjacent RF signals on
either side of the host FM signal. In conventional FM stereo broadcasting, normal
deviation of the carrier (modulation) does not significantly contribute to the recovered
composite baseband noise floor in a receiver. During laboratory testing of moc DAR
systems of the type utilizing the adjacent RF signals, modulation of the main analog
channel caused an increase in the recovered composite baseband noise floor when the
adjacent DAR signals were present.

II. Background

Testing by the Electronic Industries Association's Consumer Electronics Manufacturers
Association (EIA/CEMA) DAR Laboratory revealed an unexpected increase in recovered
baseband noise when FM modulation occurred in the presence of moc DAR system
signals of the proposed types using adjacent RF signals. These moc systems transmit
digital audio at a reduced power level in the first adjacent channels and combine the digital
and analog signals at the RF output ofthe transmitter (see Figure 1).

The noise floor increase was initially detected during the set up and measurement of
subcarrier (SCA) performance with and without the DAR signal. During the set up and
calibration of analog modulation with the moc digital signal, it was observed that without
analog modulation the baseband noise increase ranged from 15 to 20 dB; with analog
modulation, the increase was, significantly, 40 dB.

III. Testing

Follow-up testing to explore causes of the 40 dB increase in noise relied upon using a
professional SCA receiver, a wideband modulation receiver/analyzer, a spectrum analyzer
and synthesized signals. SCA receivers recover information (audio or data) transmitted on
subcarrier frequencies typically from 57kHz to 92 kHz inserted into the composite
baseband by the broadcaster. Tests using the SCA receiver revealed that the SeA signal
to-noise ratio is not only impacted by the presence of the digital signal, but also by the
addition ofmain channel modulation (with DAR). Under these conditions, SCA signal-to
noise performance would be reduced by as much as 33 dB. This is significant because
main channel modulation would not normally affect SCA performance except under
dynamic signal conditions like multipath, which even then would not cause much
degradation. Tests with the modulation analyzer showed that the composite baseband

1



noise floor is noticeably increased by the addition of main channel modulation, especially
in the regions above 40 kHz.

Testing showed that the RF and IF spectrums were free of distortion and spurious signals
with no encroachment of one signal on another. Further testing with other modulation
analyzers showed that the baseband noise increase was not limited to, or an anomaly of,
one particular type of receiver.

Additional tests substituted the DAR signal with synthesized CW and modulated signals to
study the interaction of multiple RF signals at the composite level. The complex DAR
signals were replaced with a CW signal (RF1) positioned 200 kHz away from the center of
the main channel (RFl). Viewed on a spectrum analyzer the recovered baseband spectrum
showed the resultant component at 200 kHz (see Figure 2). Modulation ofRF2 resulted
in the deviation appearing on the component at 200 kHz (see Figure 3). The same
modulation ofRF1, while RF2 was not modulated, resulted in precisely the same baseband
signature with the component at 200 kHz appearing to be modulated even though it was
not. More testing showed that modulation of the main channel (RF1) mathematically
added itself to any existing modulation of RF2 resulting in the component at 200 kHz to
appear to have more deviation than it really had, if any. What was demonstrated was that
the component at 200 kHz represents the difference between the two RF signals and that
frequency modulation -- an instantaneous difference in frequency -- is mirrored in the
recovered adjacent component.

As a final investigative step, mathematical modeling of the limiter and FM detector
resulted in similar findings under the same signal conditions.

IV. Conclusion

The test results revealed that the characteristics of the limiter and FM detector may be the
mechanisms responsible for increasing noise with modulation in the presence of a non
coherent adjacent RF signal. The design of a detector for FM broadcast receivers is
normally wideband in nature, typically from 600 kHz up to 1 MHz in bandwidth. This
bandwidth is required in order to keep the phase delay of the composite stereo signal,
especially the L-R sidebands, very low in order to recover a high quality stereo signal.
With the non-linear process of limiting in the limiter section and detector containing non
linear devices, mixing of the two signals occurs. The detector is essentially a mixer with
one input being a variable phase-shifted version of the other. If two input signals fall into
the linear range ofthe detector, the output will be proportional to the frequency difference
between them.

For example, when signals at 94.1' MHz and 94.2 'MHz are applied to an FM receiver, a
the detector output will be 100 kHz and harmonics of 100 kHz. Modulation of either
carrier will show as modulation (or additional modulation) ofthe 100 kHz beat, as well as
the modulation of the specific carrier. When the undesired adjacent RF signals are
modulated, the main channel modulation will effectively be added to any adjacent

2



component recovered by the detector. If the proximity or spacing of the signals is too
close, the added modulation of the recovered adjacent component caused by the mixing
action will "spill" into the composite baseband region and increase baseband noise.

This has implications for implementing moe DAR systems.
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Appendix 7

In-Band Digital Sound Broadcasting Subcarrier Tests

I. Introduction

Two ofthe FM In-Band/On-Channel (maC) Digital Audio Radio (DAR) systems transmit the
digital audio on independent upper and lower first adjacent RF signals. During laboratory
testing ofthe adjacent channel mac DAR systems, a significant increase in the 92 kHz analog
subcarrier noise floor was observed. This noise existed only when the main channel was
modulated and with the digital signal present. Controlled conventional main channel modulation
does not significantly contribute noise to FM subcarriers. For more information on the theory of
this problem, refer to Appendix 6.

II. General Description of Tests

These tests compared the conventional FM station analog and digital subcarrler performance with
that of a station transmitting the mac digital signal. Strong (-47 dBm) and weak (-77 dBm)
signal levels were used for the tests. The tests were also conducted with simulated multipath.
The results multipath are not included in the document. RMS noise measurements were used for
the analog subcarriers. The main program channel was modulated with clipped pink noise. Total
modulation for the analog channel was set for 110%.

The mac to FM subcarrier tests were conducted for the mac systems using three different
subcarrier groups:

Group A:

GroupB:

Groupe:

GroupD:

57 kHz RBDS 3% injection, 66.5 kHz HS digital (Seiko) 8.5% injection, and 92
kHz FM 8.5% injection.

57 kHz RBDS 10% injection and 67 kHz analog 10% injection.

Not used in this test series.

92 kHz digital (Mainstream Data) 10% injection

m. Test Results

The test results without multipath are shown in Table 1. The subcarrler data on the FM line is the
reference without the digital signal. For the -47 dBm signal level tests, the two systems
transmitting the digital signal in the first adjacent channels showed a 26 dB increase in the noise
floor for the 92 kHz analog subcarrier. The 57 kHz RBDS and 66.5 kHz digital subcarriers were



not effected by the addition ofthe digital signal. The 67 kHz FM subcarrier noise floor was
increased by 4 dB.

The weak signal level (-77 dBm) was too low for the 66.5 and 92 kHz subcarriers to operate.
The 92 kHz subcarrier showed a 6 dB increase in noise floor with the moc systems that transmit
the digital in the upper and lower first adjacent channels.

IV. Receivers Used for the Tests

SERVICE

57kHzRBDS:
66.5 kHz Digital:
67 kHz Analog:
92 kHz Analog:
92 kHz Digital:

v. Ancillary Data

RECEIVER

Denon TU-380D
SeikoRPA
Compol SCA receiver
Compol SCA receiver
Mainstream Data

Each ofthe DAR systems incorporates an ancillary data channel within the digital audio channel.
The BER for this channel was measured with the interference set at the level that produced TOA
for each ofthe noise and co-channel impairments.
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APPENDIX 3

International Telecommunication Union
Radio Communication Study Groups
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Document lOBIUSA-L
September 4, 1996
Original: English

UNITED STATES OF AMERICA

Update on In-Band On-Channel Digital Sound Broadcasting Development

1. Introduction

The development of mOC-DSB continues to proceed. Testing has revealed several
criteria critical to the practical acceptance of mOC-DSB. This paper describes those
criteria as well as various design strategies being used to address these acceptance criteria.

II. Progress to Date

mOC-DSB has been under development since 1990. mOC-DSB systems have either
claimed or demonstrated various audio codec rates, digital audio fidelity, signal-to-noise
performance, digital signal coverage, non-interference with existing analog broadcast
signals and performance in interference environments [1-8].

m. Critical Acceptance Criteria

Recent studies have scrutinized several DSB systems, including mOC-DSB, in light of
various criteria critical to the practical acceptance ofmOC-DSB [9]. These issues include
digital signal audio quality, non-interference with host analog, digital coverage limited by
first-adjacent interference, analog coverage impaired by first-adjacent mOC-DSB
interference and digital coverage limited by second-adjacent interference.

IV. Solutions Under Development

Modifications to existing mOC-DSB systems are being developed which address these
critical acceptance criteria.

Digital audio quality is being addressed through advances in audio codec technology [10
12]. Progressive development in audio codec quality versus codec rate has resulted in
improved audio quality with respect to codec rate, as well as in reduced codec rates with
respect to transcoded audio quality. Each successive reduction in codec rate enables
performance improvements in coverage, interference performance or impaired channel
performance as a consequence ofthe reduced data rate throughput required.

Interference of mOC-DSB to the host analog has been shown to be most significantly a
function of unintentional stereo matrix conversion of odd harmonics of the stereo



separation carrier [9,13]. The FM stereo separation carrier at 38 kHz has a third harmonic
at 114 kHz. Receivers prone to noise injection due to unintentional third-harmonic
conversion are susceptible to FM composite noise within ± 15 kHz of 114 kHz (the third
harmonic of 38 kHz), or 99 kHz to 129 kHz [14]. RF signals appearing 99 to 129 kHz
removed from the carrier are the most likely to appear between 99 and 129 kHz in the FM
composite. Because receivers susceptible to this interference currently exist, avoidance of
the ± 99 kHz to ± 129 kHz region of the RF spectrum by mOC-DSB modulation is
effective in reducing or eliminating perceived L-R (stereo separation) noise when listening
in stereo on the most vulnerable FM receivers [15].

Coverage limitations resulting from first adjacent analog interference pose significant
challenges which are being addressed through the use of diversity mOC-DSB sidebands.
While some mOC-DSB systems propose signals using spectrum on both adjacent
channels to transmit the digital information, improved codec performance should enable a
single digital sideband to accommodate the entire required transmission capacity. The use
of diversity DSB sidebands refers to duplicate information transmission on each (upper
and lower) sideband of the host FM signal.

In the case where first adjacent interference limits mOC-DSB coverage, application of
diversity sidebands enables the receiver to extend coverage by choosing the more reliable
of the two mOC-DSB sidebands. In the case where mOC-DSB is expected to interfere
with existing first-adjacent analog signals, the presence of redundant mOC-DSB
sidebands allows for each sideband's power levels to be established (or modified), as a
regulatory matter, to balance mOC-DSB coverage against potential interference to
existing analog first-adjacent channels.

Finally, second-adjacent interference is largely controlled by limiting the spectral
occupancy of mOC-DSB modulation to no more than ± 200 kHz removed from the
carrier.

V. Conclusion

Issues of digital signal quality, non-interference with host analog, digital coverage limited
by first-adjacent interference, analog coverage impaired by first-adjacent mOC-DSB
interference and digital coverage limited by second-adjacent interference have been
identified as critical to the practical acceptance of IBOC-DSB. These issues are being
addressed in the United States through advances in audio codec technology as well as
modulation spectrum planning and the development of diversity-sideband mOC-DSB
modulation.
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[15]Unintentional stereo matrix conversion of odd harmonics of the stereo separation
carrier presently introduces noise due to existing first adjacent channel interference.
Receiver manufacturers presently mitigate this interference by including combinations
of effective FMIF filtering, FM composite filtering (lowpass below 99kHz) and
harmonic conversion cancellation in the design of currently manufactured FM
receivers. Today's FM stereo receiver designs often employ at least one of these three
interference mitigation techniques, sometimes more, depending on market and cost
considerations.





Appendix 9

"IMPROVED IBOC DAB TECHNOLOGY FOR AMAND FM BROADCASTING" Brian
W. Kroeger, Westinghouse Wrreless Solutions Co., A.I. Vigil, USA Digital Radio,
presented and distributed at the September, 1996 Society ofBroadcast Engineers
convention.

[permission to reproduce this document was denied by USA Digital Radio. A brief
summary follows.]

Evaluations offfiOC systems proposed by USADR revealed deficiencies in measured
performance. Compromises in coverage area may be necessary as theoretical limits are
approached. Discussed are those weaknesses and certain design modifications and
techniques including:

* spread spectrum biorthogonal waveforms with spectral shaping, reduced digital signal
injection levels and reduced source coding rate

* waveform analysis and characteristics of autocorrelation and crosscorrelation and
equalizer performance, use of Gold codes, OFDM modulation and blend with time
diversity
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